2013 UTSR Fellowship

August 7, 2013
Shelby Hayes

Industrial Turbomachinery Systems

This presentation is intended only for the individual or entity to which it is addressed and may contain information that is the Confidential and/or Proprietary Information of Woodward, Inc., the disclosure of which may be in violation of applicable law. If you are not the intended recipient, or an employee or agent responsible for delivery to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this message is strictly prohibited and you are requested to notify us immediately by telephone.
Primary Summer Projects

UNS N08020 Research and Weld Trials

EB Weld Development

Spray Angle Characterization
UNSW N08020 Project Overview

- **Tasks:**
 - Research
 - Engineering Report
 - Project Day Presentation
 - Weld Trials

- **Material Introduction**
 - UNS N08020 is austenitic steel that is a chromium-nickel alloy designed for excellent corrosion resistance.
 - Superior properties for withstanding gas turbine combustors compared to 300 series stainless steels.
 - Less costly than other high nickel alloys such as Hast X or Inconel 625.

- **Project Support:** Derek Polaikis, Mike Hackenberg, Ann Kreutziger, Scott Litaker
Material Characteristics

• Chemical

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Ni</th>
<th>Cr</th>
<th>Cu</th>
<th>Mo</th>
<th>Mn</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>316</td>
<td>10-14</td>
<td>16-18</td>
<td>0-0.75</td>
<td>2-3</td>
<td>0-2</td>
<td>-</td>
</tr>
<tr>
<td>8020</td>
<td>32-38</td>
<td>19-21</td>
<td>3-4</td>
<td>2-3</td>
<td>0-2</td>
<td>0-1</td>
</tr>
<tr>
<td>Hast X</td>
<td>49-50</td>
<td>21-22</td>
<td>-</td>
<td>9</td>
<td>0-1</td>
<td>-</td>
</tr>
<tr>
<td>Inc 625</td>
<td>58-61</td>
<td>20-23</td>
<td>-</td>
<td>8-10</td>
<td>0-0.5</td>
<td>3.6</td>
</tr>
</tbody>
</table>

• Mechanical

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Density (lbs/in³)</th>
<th>Modulus of Elasticity (Msi)</th>
<th>Ultimate Strength (ksi)</th>
<th>Yield Strength (ksi)</th>
<th>Melting Point (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>316</td>
<td>0.29</td>
<td>29</td>
<td>75</td>
<td>30</td>
<td>2500-2650</td>
</tr>
<tr>
<td>8020</td>
<td>0.28</td>
<td>28</td>
<td>80</td>
<td>35</td>
<td>2525-2630</td>
</tr>
<tr>
<td>Hast X</td>
<td>0.30</td>
<td>30</td>
<td>110</td>
<td>56</td>
<td>2300-2470</td>
</tr>
<tr>
<td>Inc 625</td>
<td>0.31</td>
<td>30</td>
<td>120</td>
<td>60</td>
<td>2350-2460</td>
</tr>
</tbody>
</table>
Material Characteristics

Thermal

<table>
<thead>
<tr>
<th>Thermal Expansion</th>
<th>Expansion Coefficient ($10^{-6}/^\circ\text{C}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C to:</td>
<td>316</td>
</tr>
<tr>
<td>100</td>
<td>16.5</td>
</tr>
<tr>
<td>350</td>
<td>17.5</td>
</tr>
<tr>
<td>900</td>
<td>19.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Thermal Conductivity (W/m·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(°C)</td>
<td>316 SS</td>
</tr>
<tr>
<td>50</td>
<td>14.6</td>
</tr>
<tr>
<td>200</td>
<td>17.2</td>
</tr>
<tr>
<td>400</td>
<td>20.1</td>
</tr>
</tbody>
</table>
Machining

- **UNS N08020** requires more power than carbon steels to machine.
 - *Machine tools should be rigid* and used to no more than 75% of their rated capacity.
 - Tools, either high speed steel or cemented carbide, *should be sharp*, and reground at predetermined intervals.
 - Feed rates should be high enough to *ensure that the tool cutting edge is getting under the previous cut* thus avoiding work-hardened zones.
 - Lubricants, such as sulfur-chlorinated petroleum oil, are suggested. Such lubricants may be thinned with paraffin oil for finish cuts at higher speeds.
Welding

• **Cleanliness of the weld materials is critical.** Expressed by Siemens as well.

• **Minimize dilution in the weld fillers.**
 - ER320LR filler metal for TIG welding
 - AWS ERNiCrMo-3 for TIG welding to other metal alloys such as 316, C276 and Alloy 22

• **The nickel alloy weld filler used with UNS N08020 gives a more viscous weld pool than with conventional stainless fillers.**

• **Minimize heat input, and the interpass temperatures should be kept below 100°C.**
Current Weld Trials

• Manual TIG weld Samples 1 and 2, PN Joint 15: UNS N08020 to SS 304.

• Sample 1 had visible cracking because Alloy was being welded to a dissimilar material.

• Sample 2 was welded with a gap and eliminated the visible cracks.
Development Schedule

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PILOT NOZZLE DEVELOPMENT</td>
<td>Tue 10/29/13</td>
</tr>
<tr>
<td>2</td>
<td>Coupon Design and Release</td>
<td>Mon 6/3/13</td>
</tr>
<tr>
<td>3</td>
<td>RFQs and Review</td>
<td>Mon 6/10/13</td>
</tr>
<tr>
<td>4</td>
<td>PO Placement</td>
<td>Mon 6/17/13</td>
</tr>
<tr>
<td>5</td>
<td>Component Fabrication and Delivery</td>
<td>Tue 7/16/13</td>
</tr>
<tr>
<td>6</td>
<td>Joint 12; EBW Alloy20 to Inco625</td>
<td>Fri 8/23/13</td>
</tr>
<tr>
<td>10</td>
<td>Joint 15; TIG Manual Alloy20 to 304</td>
<td>Wed 9/4/13</td>
</tr>
<tr>
<td>14</td>
<td>Joint 8; EBW Alloy20 to 321</td>
<td>Thu 9/19/13</td>
</tr>
<tr>
<td>18</td>
<td>Joint 3; EBW Alloy20 to 321</td>
<td>Tue 10/29/13</td>
</tr>
<tr>
<td>22</td>
<td>Customer Review</td>
<td>Tue 10/29/13</td>
</tr>
<tr>
<td>24</td>
<td>DF42 NOZZLE DEVELOPMENT</td>
<td>Wed 2/19/14</td>
</tr>
<tr>
<td>25</td>
<td>Coupon Design and Release</td>
<td>Tue 7/23/13</td>
</tr>
<tr>
<td>26</td>
<td>RFQs and Review</td>
<td>Fri 7/26/13</td>
</tr>
<tr>
<td>27</td>
<td>PO Placement</td>
<td>Mon 7/29/13</td>
</tr>
<tr>
<td>28</td>
<td>Component Fabrication and Delivery</td>
<td>Mon 8/19/13</td>
</tr>
<tr>
<td>29</td>
<td>Joint 5mm Wall; TIG Alloy20 to HastX</td>
<td>Fri 9/20/13</td>
</tr>
<tr>
<td>33</td>
<td>Joint 7.2mm Wall; EBW Alloy20 to Alloy20</td>
<td>Wed 10/30/13</td>
</tr>
<tr>
<td>37</td>
<td>Joint 3mm Wall; TIG Alloy20 to 304L</td>
<td>Tue 12/3/13</td>
</tr>
<tr>
<td>41</td>
<td>Joint 3mm Wall; TIG Alloy20 to 316L</td>
<td>Thu 1/16/14</td>
</tr>
<tr>
<td>45</td>
<td>Joint 3mm Wall; EBW Alloy20 to 321</td>
<td>Wed 2/19/14</td>
</tr>
<tr>
<td>49</td>
<td>Customer Review</td>
<td>Wed 2/19/14</td>
</tr>
</tbody>
</table>

- Schedule dependent on resource availability.
- Purpose of the project is to familiarize Woodward with UNS N08020.
Spray Angle Project Overview

• **Purpose:** Determine the optimal method for measuring the spray angle of atomizers.
 - Accuracy
 - Precision
 - Repeatability
 - Time

• **Methods**
 - Hand
 - Picture
 - Habco System
 - Production (not included in study)

• **Project support:** Dan Burke, Bruce Harrar, Scott Litaker
Methods

Hand

Habco

Picture
HOLE SIZE MAY VARY TO MEET FLOW REQUIREMENTS.

2. SPRAY ANGLE TO BE 80°-100°. FLOW TO BE 198,3-210,5 PPH @ 100 PSI USING MIL-PRF-7024 II D CALIBRATION FLUID.
Definition of Spray Angle

- Angle formed by two straight lines drawn from the discharge orifice and cut at specified distance from the atomizer face.
 - Distance from discharge orifice
 - Spray density
 - Curved boundaries
Method Comparison

- **Hand**
 - Tedious Work (without good precision)
 - Operator Dependent
 - Errors
 - Visual Fatigue
 + Alignment

- **Habco System**
 - Requires a Master
 + Consistent
 + Quick
 + Ability to Quantify Lighting
 + Potential for Production Applications

- **Photos**
 - Time Consuming
 - Camera Settings Vary
 - Operator Dependent
 + Consistent Specific Procedure
 + Visualize Lighting Variations
Method Comparison

- The data recorded by the Habco vision system is more condensed and more repeatable.
Time Comparison

- Significant time decrease when using the Habco system.
- Data most consistent with 3 to 5 center lights.

- When the light is in the center, the experiment set-up is much quicker and more straightforward.
Effect of Lighting Intensity

- Data is more linear with 3 or 4 lights.
- The variation in angle measurements increases as the light source gets further from the exit orifice.
- Recommendations:
 - Light source should not be further than 12 inches away.
 - Conduct a similar study with a master.
Future Actions and Recommendations

• **Recommend using the Habco vision system for DF42.**
 - A master for each atomizer design would have to be set-up to determine the optimal distance of the light to the exit orifice and light intensity.
 - Develop light fixtures that enable flexibility.
 - Design a fuel recycle tube to reclaim atomized fuel.
 - Dan Burke is already developing more robust fixtures to accommodate for the Habco vision system.
EB Weld Development Project Overview

• **Problem**: Tail-out cracks when EB welding Hast-X to SS have been a reoccurring problem.
 - Both Siemens and GE require the use of Hast-X in the nozzle.

• **Project Goal**: Optimize weld and process parameters such that microcracking in the tail-out section of the weld is eliminated.
 - Initial goal for the summer was to identify key input variables.

• **Benefits**: Reduce costs and increase the value added.
 - No Wasted Material
 - No Rework Procedures
 - Competitive Advantage

• **Project Support**: Antione Ford, Derek Polaikis
Lean Six Sigma Project Charter

Project Name: HAST-X TO 300 SERIES WELD DEVELOPMENT
Project Type: Six Sigma
Leader Name: MARK DIERINGER
Business Unit: ATS
Plant Location: Greenville
Champion: MARK DIERINGER
BB Mentor: JOE CONWAY

Problem Description
EB WELDING HAST-X (AMS 5754) TO 300 SERIES STAINLESS STEEL YIELDS MICROCRACKING IN THE TAIL-OUT SECTION OF THE CIRCUMFERENTIAL WELD. CONSEQUENTLY, THE PRESENCE OF MICROCRACKS IN THE WELD FAILS NDT (FPI INSPECTION).

Goal / Objective
THE GOAL IS TO OPTIMIZE WELD AND PROCESS PARAMETERS SUCH THAT MICROCRACKING IN THE TAIL-OUT SECTION OF THE WELD IS ELIMINATED THUS PASSING SCRUTINY OF NDT METHODS (FPI INSPECTION).

Business Benefit(s)
AT PRESENT WOODWARD’S ONLY COUNTERMEASURE IS TO ADD EXTRA MATERIAL (COST) LOCALLY AT THE JOINT PREP THAT GETS, SUBSEQUENTLY, MACHINED (REWORK) TO A FINAL DIAMETER. IN EFFECT THE MICROCRACKING IS STILL PRESENT BUT IS MACHINED AWAY DURING A TURNING OPERATION.

Team Members
<table>
<thead>
<tr>
<th>Name</th>
<th>Job Function</th>
<th>Metric</th>
<th>Baseline</th>
<th>Goal</th>
<th>Status Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craig Tucker</td>
<td>Program Manager</td>
<td>TAILOUT CRACKS</td>
<td>ADDED MAT’L AT PREP</td>
<td>NO ADDED MAT’L AT PREP</td>
<td>Green</td>
</tr>
<tr>
<td>Jack Bardolph</td>
<td>Process Engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tom Austin</td>
<td>Manufacturing Engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antione Ford</td>
<td>Project Engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shelby Hayes</td>
<td>Engineering Intern</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derek Polaikis</td>
<td>Process Engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Status Key:
- Green: On-Track
- Yellow: Completed
- Red: Needs Attention
- Dark Red: Needs Urgent Attention
Why do we have tail-out cracking when welding Hast-X to SS 304?
Redefine Summer Goal

• Current measurement abilities of Woodward is Pass or Fail the NDT (FPI).
 ▪ Past records of welding samples were not helpful, because the samples failed but we did not have any information on the procedure.
 ▪ No indication of the results improving, maintaining or declining.

• Need an advanced measurement system that can quantify the cracks.
 ▪ Useful to know length, crack density, depth and location.
Measurement

- **Equipment and Software Upgrade**
 - Cost: High initial cost
 - Time: 1 day

- **M&P**
 - Cost: $886/sample
 - Time: 5-10 days

- **ATS**
 - Cost: $150/sample
 - Time: 3-5 days

- **Recommendation:** Upgrade the measurement system. Derek Polaikis would be able to use the upgrades on various applications and it will add to the effectiveness of Woodward.
Skills and Lessons Learned

• **Company Methods**
 - Six Sigma
 - Culture into Action

• **NPI Processes**
 - Assemblies
 - Quality Inspections
 - Braze Processes
 - Pressure Testing
 - Lathe
 - SMD Testing
 - Laser Marker

• **Production Processes**
 - EB Welding
 - FPI
 - CMM
 - Flow Test
 - Collar Press Fit

• **Customer and Supplier Interaction**
 - GE Tour
 - Phone and Email Correspondence
 - M&P Face-to-Face

• **Welding**
 - TIG
 - Laser Tacking
 - Spot/Resistance Tacking
 - Microscope Inspection

• **Project Management**
 - Wedding Planning/Delegation Proficiency