UTSR 2018 Gas Turbine Industrial Fellowship Program

Thomas Glenn
B.S. Candidate, Aerospace Engineering
Georgia Institute of Technology
Fellow Background

• Hometown: Flowery Branch, GA
• Rising 4th year Aerospace Engineering Undergrad at Georgia Institute of Technology
• Undergraduate research assistant at the Ben T. Zinn Combustion Laboratory
Introduction

• Three main tasks performed during research fellowship
 • Axial Compressor Test Demo
 • Design and construction
 • High-Pressure Oxygen Safety Review
 • Literature review and risk identification
 • Original Gas Turbine Design Project Renewal
 • Assistance in preparing project for renewal
Axial Compressor Demo

• Axial compressor demo for turbomachinery design training course
 • Based on cordless leaf-blower with two-stage axial compressor

• Transparent compressor stage gives access to blade geometry for aerodynamics calculations
Axial Compressor Demo (cont.)

- Instrumentation: dP sensor, static pressure sensor, orifice plate, thermocouples, potentiometer throttling

Test Demo P&ID

Completed Axial Compressor Test Demo
Axial Compressor Demo (cont.)

- Theoretical compressor map constructed using velocity triangles and isentropic compressor relationships
- Actual performance roughly half that of the theoretical model

![Model Compressor Map](image1.png)

![Experimental Compressor Map](image2.png)
Axial Compressor Demo (cont.)

• Future Work
 • Reduce vibrations at high speeds that might affect gauge accuracy
 • Consider replacing 0-50 in. H₂O dP gauge with 0-15 or 0-25 in. H₂O gauge
 • Performance is affected by battery charge, so an additional battery would prove useful if the demo needs to run for longer periods of time
High Pressure Oxygen Safety Review

• Background
 • Oxy-fuel supercritical CO₂ gas turbine combustor
 • Reduced flow test loop
 • Oxygen supplied at pressures as high as 31.6 MPa
 • Components and materials reviewed for safe use and operation
High Pressure Oxygen Safety Review (cont.)

- At high pressures, gaseous and liquid oxygen is an incredibly potent oxidizer
 - At 100% oxygen concentration, most nonmetals are flammable
 - As pressure increases, metals will also become flammable

(IGC Doc 13/12/E)
High Pressure Oxygen Safety Review (cont.)

• Material Selection
 • Nickel, Monel, brass, and Inconel metals are more resistant to ignition than stainless steel, carbon steel, and aluminum
 • Carbon and stainless steels can be used at low pressures and velocities
 • All nonmetal components should be tested in before use

• Component Selection
 • High risk components include valves (globe, butterfly, ball, check, relief), regulators, filters, and fittings

• Particle impact ignition risk can be mitigated through thorough chemical and mechanical cleaning
Great Horned Owl (GHO)

• IARPA program focused on the development of systems that can be utilized in a small UAV

• SwRI developed a prototype small, lightweight gas turbine generator for use in an electric hybrid propulsion system
 • Features novel single disk radial flow design
 • Simple construction, lightweight, rugged design
 • Novel bearing lubrication system using two peristaltic pumps

• Photos and details are limited due to IARPA requirements
GHO (cont.)

- Fellowship tasks
 - Experimental setup for project renewal
 - Computer installation for DAQ and controls
 - Repaired bearing lubrication system and visually inspected bearings to ensure proper delivery of lubrication oil
 - New fuel tank installed and connected to boost pump supply
 - Prepared GHO for rotor balancing process
Miscellanea

• Modal testing for tie bolt rotor
 • Ping testing and ANSYS analysis

• Literature Review
 • Relationship between axial preload and angular contact bearing stiffness
 • Strong disparity between experimental data and theoretical models
Acknowledgements

• I would like to thank UTSR and SwRI for the opportunity to participate in the 2018 Gas Turbine Industrial Fellowship Program. I would like to extend a special thanks to Klaus Brun, Tim Allison, David Ransom, Aaron Rimpel, Natalie Smith, Seth Cunningham, and Griffin Beck for providing me with opportunities to learn and develop valuable new skills.