Lightweight Recuperator for FTT’s Advanced Engine Concept

Design and fabrication of a recuperator demonstrator

Jonathan Long
Heat Transfer Intern
Florida Turbine Technologies, Inc.
561-427-6400
jlong@fttinc.com
www.fttinc.com

Approved for Public Release.
Overview

• Introduction
• Heat Exchangers
• Waste Heat Recovery Recuperator
• Demonstrator Build
• Conclusions
Introduction

- **Objectives:**
 - Design a lightweight recuperator applicable to FTT’s Advanced Engine Concept
 - Perform a mock build of a recuperator demonstrator

- **What is heat transfer?**
 - The process of heat exchange between two fluids operating under different temperatures
 - A device that implements this process is a heat exchanger

- **What is a recuperator?**
 - Waste heat recovery heat exchanger
 - Utilizes the hot turbine exit gases to heat a portion of cooler compressor discharge air and returns it to the combustor
 - Reduces heat losses and therefore increases efficiency
Heat Exchangers

• Note the temperature differentials between the fluids. The parallel flow heat exchanger has excellent heat transfer in the entry but quickly diminishes downstream.
• Heat transfer in the counter flow scheme is maximized along the entire length of the heat exchanger and provides consistent heat transfer per unit length.
• These differences are due to the fact that there is a continuous supply of “fresh” fluid entering in opposite ends of the heat exchanger.
Heat Exchanger: Effectiveness @ Cr = 1

Where \(C_{\text{min}} / C_{\text{max}} \) are functions of fluid properties and mass flow rate.

To achieve the same effectiveness as a counter flow heat exchanger, the sizing of the cross flow and parallel flow heat exchangers would have to increase.

Approved for Public Release.
By increasing A, it will increase the effectiveness and size of the recuperator.
• **Past Studies**
 – Analysis of a 90% effective Vick recuperator
 – An optimized 90% effective recuperator based off the pattern below
 • Too large and heavy for aerospace applications
 • 33.6” x 33.6” x 16” and weighed over 1100 lbs

• **Present Work**
 – Redesigned for 50% effectiveness
 • 10.75” x 10.75” x 4.70”
 • Weighing about 40 lbs without manifolding

Approved for Public Release.
Recuperator

• **How does it work?**
 – Withdraws compressor discharge air and is flowed counter to the turbine exhaust gases drawn in from the other side

• **Past Studies:**
 – Vick’s 90% effective recuperator designed for a 3 kW, 2:1 pressure ratio microturbine
 – Flat plate, counter flow design
 • 60 panels, 0.25 mm thick, spanning 65 mm total

• **New Design for the Advanced Engine Concept**
 – Designed for 10:1 pressure ratio between channels
 – Internal structure must be robust while maximizing surface area
 – New array consisting of circular and “+” shaped channels
This redesigned high density recuperator utilizes “+” shaped hot flow channels to maximize heat transfer to the cold flow tubes while offering structural rigidity.

The Vick recuperator, below, offers improved effectiveness in a small package but the flat plate design would deform under the 10:1 pressure ratio.
Recuperator Design

- Developed a spreadsheet that incorporated laminar flow theory into a 1-D heat transfer analysis for a counter flow heat exchanger

- **Inputs:**
 - Temperature
 - Turbine Exhaust
 - Compressor Discharge
 - Pressure
 - Turbine Exhaust
 - Compressor Discharge
 - Mass flow rate
 - Axial Length
 - Geometric Parameters
 - Wall thickness
 - Cold flow cross-sectional area

- **Outputs:**
 - Thermal Efficiency (Effectiveness)
 - Cold air and hot gas exit temperature
 - Pressure Loss
 - Cold air and hot gas exit pressure
 - Discretized Sections
 - $Re, f, HTC, FP-Ps, M, P/P$
 - Minimum number of required channels
 - Surface Areas
 - Volume
 - Mass and Weight
Recuperator: Design Parameters

- Key relationships
 - \(q_{\text{convection}} = hA\Delta T \)
 - \(q_{\text{conduction}} = \frac{kA}{t} \Delta T \)
 - \(q_{\text{overall}} = UA\Delta T_{lm} \)
 - \(T_{lm} = \frac{\Delta T_2 - \Delta T_1}{\ln\left(\frac{\Delta T_2}{\Delta T_1}\right)} \)
 - \(NTU = \frac{UA}{\dot{m}C_P} \)
 - \(UA = \frac{1}{\frac{1}{h_cA_c} + \frac{1}{k_wA_w} + \frac{1}{h_hA_h}} \)
 - \(Re_D = \frac{\rho UD}{\mu} = \frac{4\dot{m}}{\pi D \mu} \)
 - \(Nu = \frac{h_D}{k} = 4.36 \) for constant heating
 - \(\varepsilon = \frac{T_{c,0} - T_{c,i}}{T_{h,i} - T_{c,i}} \)
Designing the Recuperator

Effectiveness

NTU

Design point: NTU = 1, \(\varepsilon = 0.50 \)

Approved for Public Release.
1-D Heat Transfer Prediction

Initial Conditions and Inputs

- Hot gas inlet
- Cold Air Inlet
- ΔT, ΔP
- ΔT, ΔP
- ΔT, ΔP
- ΔT, ΔP

Hot Gas Outlet

- P/P
- HX Sizing

Post Processing

Compute Re, f, HTC, FP-Ps, M, and P/P for each stage

Approved for Public Release.
The resulting code gives temperature data, as well as other information, for each section from inlet to outlet.

Efficiency:
• 57%

Pressure Drop:
• 2% P/P through both channels

Thermal Resistances:
• 43% from the hot gas to the wall
• 56.3% from the cold gas to the wall
• 0.7% Conductive resistance through the wall
Demonstrator Build

- **Demonstrator Part**
 - For the feasibility and thermal performance tests, only a small portion was needed for the build
 - Consisted of 12 x 82 cold flow channels

- **Base Material**
 - Acrylic based polymer

- **Process**
 - Fabricated using FTT’s SLA printer
 - Feasibility test for Direct Metal Laser Sintering (DMLS) which would be used to build the actual part
 - A process that prints thin layers of plastic with wax to support the internal structure
 - Wax must be drained once the build is complete

- **Pros/Cons**
 - SLA is much more cost effective than DMLS for an experimental part
 - Provide clues for underlying problems with the part geometry
 - Acrylic has a low melting temperature
 - Reduced temperature range for testing

Approved for Public Release.
SLA Fabrication: Results

• By inspection:
 – Internal geometry in the recuperator section was maintained
 – Wax was not able to drain from the small channels
 – Deformations in the manifolding resulting from capillary action
 – Collapse of the hot gas channels
 – Not enough internal supports to maintain the geometry
Results

Solutions:

• Added extra material for handling purposes
• Added external and internal ribs to support the rectangular channels
• Modified the manifolds to allow for easy removal of wax material
• Solvents may be used to aid in the removal of excess wax
Results

• The 2nd trial showed much improvement
 – Added supports prevented collapsing
 – Modified manifolds enabled the residual wax to drain properly

• Areas for improvement
 – Selected material is inherently weak and may not handle the pressures
 – Difficult to completely remove the residual wax.
Future Work

• Thermal Performance Testing
 – Increase hole size to maintain better tolerances
 – Increase wall thickness to improve strength

• Performance and Weight Optimization

• Determine efficient manifolding scheme to the Advanced Engine Concept

Approved for Public Release.
Conclusion

- Learned the pros and cons of various heat exchanger designs
- Outlined the important concepts and design procedures for a lightweight recuperator
- SLA Model
 - Learned the capabilities of the machine
 - Addressed the problem areas for future projects
 - DMLS is feasible, the part must be properly supported to prevent the part from deforming
- More design work and testing needed

Approved for Public Release.
Acknowledgements

Thank you...

- Jim Downs for your expertise in heat transfer design
- An Le and Bryan Bernier for your additional support
- And everyone at FTT for making me feel a part of the family