Diffusion Bonding of H230 Ni-superalloy for application in microchannel heat exchangers

M. Kapoor, Ö. Doğan, K. Rozman, J. Hawk, A.Wilson, T. L’Estrange, V.Narayanan

The 5th International Symposium - Supercritical CO₂ Power Cycles

March 28-31, 2016, San Antonio, Texas
DISCLAIMER

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."
The sCO$_2$ cycle offers several advantages:

- **High efficiency due to no phase change during operation and high heat recuperation**
- **Compact turbo machinery reduces capital cost**
- **Ability for higher heat recuperation makes heat exchangers an integral part of the sCO$_2$ cycles**

S. A. Wright, “Overview of supercritical co2 power cycle development at Sandia National Laboratories,” in 2011 University Turbine Systems Research Workshop, Columbus, Ohio, 2011.
Heat Exchangers

- Micro channel heat exchangers have much higher heat transfer efficiency

- Pattern microscale flow paths
- Join these using laser welding, diffusion bonding or brazing

- Dimensional Tolerances
- Uniform microstructure
- Imperative 700°C-800°C, 20-30 MPa
Materials – H230 Ni-base superalloy

- Solid-solution strengthened Ni-Cr-W-Mo superalloy
- Excellent high temperature strength, Oxidation, grain growth and carburization resistance
- sCO_2 exposure for 500 h - Lowest mass gain at 700°C, 20 MPa, compared to 282 and 740°

Heat treatment fixture operating at 850°C
Heat treatment basket for 1200°C
Gas turbine engine combustor

Haynes.com; *Pint et al., The effect of temperature on sCO_2 compatibility of conventional structural alloys, 4th International Symposium - sCO2 Power Cycles, 2014
Diffusion Bonding Model

Temperature, Pressure and Time for DB??

550 µm H230 shims

Surface assumptions-
- Parallel, elliptical voids, contact between ridge tops
- Negligible effect of surface impurities or oxides

Void Closure due to -
- Initial plastic deformation of ridges
- Surface & volume diffusion from surface source to the neck
- Evaporation from surface source to condensation at the neck
- Grain boundary and volume diffusion from interfacial source to the neck
- Power-law creep

![Modelled surface—long parallel ridges.](image)

Area Bonded

Input Parameters

• Fixed input parameters-
 - Surface roughness height,
 - Temperature, Material properties

• Variable input parameters-
 - Pressure & Time

• Outputs-
 - % area bonded vs. time
 - % strain vs. time

• Diffusion Bonding Parameters – 1150°C for 8 hrs at 12.7 MPa pressure
• Area Bonded - > 85 %
Output of Diffusion Bonding - stacks

Cold rolled and 1232 °C solution annealed - 550 µm H230 shims

→ 1150°C, 12.7MPa, 8 hrs

H230 DB stacks

Tensile samples from H230 DB stacks
Microstructure – Non-plated H230
Grain growth across the bond

- Etched microstructure to observe grain growth through the bond line
- No voids resolved
Microstructure near the bondline

- Primary – Primary carbides which form at higher temperature

- > 90% Area Bonded
W- & Mo-based Primary Carbides

- Primary Carbides – W- and Mo-based carbides which form at higher temperature
Is the DB stack different?

- 3X higher precipitates/unit area in DB stack
Microstructure – Ni-plated H230
Ni-Plated H230

Large voids at bondline

Grain growth at the bondline
Microstructure near the bond

- Primary Carbides
- Increase in Ni, dip in Cr at the bond
Mechanical Properties
At 750°C, the yield strength of both Ni-plated and Non-Ni-plated H230 is 76% and 82%.

- At RT, the yield strength of both Ni-plated and Non-Ni-plated H230 is ~ 90%
Fracture surfaces - Ni-plated H230 DB stack

- Hardly any elongation, fracture at the bond, cup-and-cone fracture at the microscale

RT

- Fracture through the sheet and the bond

750°C
Fracture surfaces - Non-plated H230 DB stack

- Fracture through the sheet
- Fracture through the bond at 750°C
Side view of fracture surfaces – Non-plated H230 DB stack

- RT – microcracks along primary carbide bands
- 750°C – cracking along DB lines
Summary

1) Uniform bond with grain growth across the bondline
2) Ni increase, Cr dip through the bond
3) 750°C - 76% and 82% of H230
 RT - 82.5% and 89% of H230
4) Micro cracking along precipitate bands
5) Cracks along DB
Thank You