Integrally Geared Compressors for Supercritical CO_2

René Dittmer
4th International Symposium – Supercritical CO_2 Power Cycles
Pittsburgh, PA, USA, September 9 – 10, 2014
Integrally Geared Compressors for Supercritical CO$_2$

All data provided on the following slides is for information purposes only, explicitly non-binding and subject to changes without further notice.
Integrally Geared_compressors for Supercritical CO₂

<table>
<thead>
<tr>
<th></th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CO₂ Sources and Properties</td>
</tr>
<tr>
<td>2</td>
<td>CO₂ Compression Systems</td>
</tr>
<tr>
<td>3</td>
<td>Product Development</td>
</tr>
</tbody>
</table>

[Image of a 3D model of compressors]
Integrally Geared Compressors for Supercritical CO₂

Industrial Application

Cement and steel industry, petrochemicals

Conventional Power Plant

Coal

Air

Boiler

Power generation steam turbine

Flue gas treatment

CO₂ separation

Integrated Gasification Steam Cycle (IGSC)

Air

Air separation

Gasifier

Power generation steam turbine

Flue gas treatment

CO₂ separation

Oxyfuel

Air

Air separation

O₂

Boiler

Power generation steam turbine

Flue gas treatment

CO₂ separation

Integrated Gasification Combined Cycle (IGCC)

Air

Air separation

Gasifier

Shift reactors

CO₂ separation

Power generation gas turbine

XTL, Coal Gasification

Air

Air separation

Gasifier

Shift reactors

CO₂ separation

Product gas

Storage

CO₂ compressor
High-Pressure CO₂ means:

- Discharge pressure > 100 bara
- Very low compressibility factors at moderate pressures
- Compression from gas-phase to supercritical phase
- Very high density

Applications:
EOR / CCS / UREA
Integrally Geared Compressors for Supercritical CO₂

Pressure-Density-Chart

Compressor Discharge pressure in bara

Compressor Discharge Density in kg/m³

Density of CO₂ @ 130 bar = Density of CH₄ @ 700 bar
Integrally Geared Compressors for Supercritical CO\textsubscript{2}
Integrally Geared Compressors for Supercritical CO₂

<table>
<thead>
<tr>
<th></th>
<th>CO₂ Sources and Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CO₂ Compression Systems</td>
</tr>
<tr>
<td>3</td>
<td>Product Development</td>
</tr>
</tbody>
</table>
Integrally Geared Compressors for Supercritical CO₂

Different compression concepts:
Compression from gas-phase to 200 bara (above critical point)

Gas phase only

Gas & liquid
Integrally Geared Compressors for Supercritical CO₂
Integrally Geared Compressors for Supercritical CO₂

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CO₂ Sources and Properties</td>
</tr>
<tr>
<td>2</td>
<td>CO₂ Compression Systems</td>
</tr>
<tr>
<td>3</td>
<td>Product Development</td>
</tr>
</tbody>
</table>
Integrally Geared Compressors for Supercritical CO₂

More than 20 years of experience, 450,000 operating hours and dedicated research.
Integrally Geared Compressors for Supercritical CO₂

Discharge pressure in bara

Massflow in Million tons per year

- UREA
- EOR / CCS
- R & D
Integrally Geared Compressors for Supercritical CO$_2$

R&D project CORA (CO$_2$ Research Rig for Advanced Compressors)

- Liquid-CO$_2$ from tank
- High pressure closed loop
- Single lift unit
- 2 Stages
- MAWP: 250 bara
- 1 Cooler

CO$_2$-Supply
Test Rig
Integrally Geared Compressors for Supercritical CO$_2$
Integrally Geared Compressors for Supercritical CO₂

R&D project CORA (CO₂ Research Rig for Advanced Compressors)
- High-pressure tests for CO₂-compressor components
- Development of stages for CO₂-compressors
- Investigation of CO₂-compressor behaviour in the region of the critical point
- Development of inlet guide vanes for very high inlet pressures
- Full load testing of gear components
- Improving:
 - Bearing design
 - Static seals
 - Shaft seals
 - Maintainability
Integrally Geared Compressors for Supercritical CO$_2$

- HP-CO$_2$-compression is a complex task
- Integrally geared compressors (RG’s) are very flexible, save investments and operating costs
- 450,000 operating hours with RG-type in HP-CO$_2$ compression
- A dedicated HP-CO$_2$ test rig for further design improvements
Questions please

René Dittmer
Project Manager Sales
Refineries & HPI

MAN Diesel & Turbo SE
Egellsstr. 21
13507 Berlin / Germany

Tel.: +49 30 440402 2976
rene.dittmer@man.eu
Disclaimer

All data provided in this document is non-binding. This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.