Steady-State Power Operation of a Supercritical Carbon Dioxide Brayton Cycle

Eric Clementoni
Timothy Cox
Presentation Summary

• S-CO$_2$ Brayton Cycle Integrated Systems Test (IST) Overview

• System Operational Overview
 – Loop startup
 – Normal Operating Conditions

• Operational Test Results
 – Normal Power Generation
 – Maximum Power Operation
IST Overview

• 100 kWe IST has been main S-CO$_2$ development focus of BMPC

• Simple Brayton cycle
 – Single variable speed turbine-compressor
 – Single constant speed turbine-generator
 – Single recuperator

• Focus on system control
 – Rapid startup
 – Power changes
 – Shutdown
IST Physical Layout

Turbo-Generator

Recuperator

Precooler

Turbo-Compressor (not visible)
IST Turbomachinery

Turbo-Generator

Thrust Bearing

Turbo-Compressor

Compressor/Diffuser

Turbine
Loop Startup

• Heat up system to supercritical conditions and achieve normal system mass
• Start up both turbomachines to 37,500 rpm
• Heat up system to normal turbine inlet temperature
 – Transition TG from motoring to generating
• Establish normal compressor inlet conditions
Normal Power Operation

• Turbine-generator operates at fixed speed with load regulated to maintain speed
• Turbine-compressor thermal-hydraulically balanced
 – Turbine power = compressor power + losses
• Power level changed by position of compressor recirculation valve
 – Valve nearly full closed at maximum system power
IST Power Limitations

• TG output voltage droops as power is increased

• Voltage droop affects speed and rotor position algorithm causing delay in firing of IGBTs and degradation of power factor
 – Limited to 24 kWe DC (~30 kWe AC) @ 55,000 rpm

• Permanent magnet rotor remagnetized to increase output voltage
 – Resulted in higher power capability
 – New target ~50 kWe AC @ 60,000-65,000 rpm
Maximum Power Operation

November 2013

Supercritical CO₂ Power Cycles Symposium
September 9-10, 2014
System Mass Flow Rates

Flow (lbm/s)

- TG Turbine
- TC Turbine
- Compressor
- Compressor Recirc

Speed (rpm)

- TG Turbine
- TC Turbine
- Compressor
- Compressor Recirc

Time (seconds)

Supercritical CO$_2$ Power Cycles Symposium
September 9-10, 2014
Compressor Map

Model Prediction for Design Operating Conditions

Test Data
Summary

• IST continuing to make progress towards the purpose of demonstrating controllability of the S-CO2 Brayton cycle

• System operation up to 40 kWe AC has been demonstrated with good agreement with model predictions

• Normal power operation over range of power levels up to ~50 kWe planned
Acknowledgements

• This paper summarizes work that has been performed by a number of devoted engineers, scientists, technicians, and support personnel at the Bechtel Marine Propulsion Corporation and our subcontractors. This paper would not be possible without the efforts of this team.